Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli
نویسندگان
چکیده
Terephthalic acid (TPA) is an important industrial chemical currently produced by energy intensive and potentially hazardous p-xylene (pX) oxidation process. Here we report the development of metabolically engineered Escherichia coli system for biological transformation of pX into TPA. The engineered E. coli strain harbours a synthetic TPA pathway optimized through manipulation of expression levels of upstream and downstream modules. The upstream pathway converts pX to p-toluic acid (pTA) and the downstream pathway transforms pTA to TPA. In a two-phase partitioning fermentation, the engineered strain converts 8.8 g pX into 13.3 g TPA, which corresponds to a conversion yield of 96.7 mol%. These results suggest that the E. coli system presented here might be a promising alternative for the large-scale biotechnological production of TPA and lays the foundations for the future development of sustainable approaches for TPA production.
منابع مشابه
Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase.
Escherichia coli JM101(pSPZ3), containing xylene monooxygenase (XMO) from Pseudomonas putida mt-2, catalyzes specific oxidations and reductions of m-nitrotoluene and derivatives thereof. In addition to reactions catalyzed by XMO, we focused on biotransformations by native enzymes of the E. coli host and their effect on overall biocatalyst performance. While m-nitrotoluene was consecutively oxyg...
متن کاملLiquid-Phase Oxidation of p-Xylene using N-Hydroxyimides
In this communication, we describe p-xylene oxidation with molecular oxygen at 373 K and atmospheric pressure using N-hydroximide catalysts. p-Xylene conversion was rather high over the first 2 h of reaction and complete by the end of the experiment. The product distribution curves versus reaction time are typical of consecutive reactions. The main intermediate product is p-toluic acid. Peak co...
متن کاملHeterogeneous Distillation of theSystem Water-Acetic Acid- p-Xylene: Study of its Fluid Phase Equilibria, Micro-Pilot Column Experimental Results and Computer Simulation
The separation of the binary mixture water-acetic acid by direct distillation is not suitable for industrial applications because of the presence of a tangent pinch on the pure water end. The problem is overcome via heterogeneous azeotropic distillation adding a third component, the entrainer, generally immiscible with water. With particular reference to terephthalic acid production process, we...
متن کاملOn the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene.
Polyethylene terephthalate (PET) is a polymeric material with high global demand. Conventionally, PET is produced from fossil-fuel-based materials. Herein, we explored the feasibility of a sustainable method for PET production by using solely bio-renewable resources. Specifically, 2,5-dimethylfuran (derived from lignocellulosic biomass through 5-(hydroxymethyl)furfural) and acrolein (produced f...
متن کاملTwo-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling
Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L...
متن کامل